1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//! MCaptch's SHA256 based Proof of Work library
//!
//! # Example:
//! ```rust
//!   use pow_sha256::{ConfigBuilder, PoW};
//!
//!   fn main() {
//!       let config = ConfigBuilder::default()
//!         .salt("myrandomsaltisnotlongenoug".into())
//!         .build()
//!         .unwrap();
//!
//!       let phrase = "ironmansucks";
//!
//!       const DIFFICULTY: u32 = 1000;
//!
//!       let work = config.prove_work(&phrase, DIFFICULTY).unwrap();
//!       assert!(config.is_valid_proof(&work, &phrase));
//!       assert!(config.is_sufficient_difficulty(&work, DIFFICULTY));
//!   }    
//! ```

use std::marker::PhantomData;

use derive_builder::Builder;
//use num::Num;
use serde::{Deserialize, Serialize};
use sha2::{digest::Update, Digest, Sha256};

/// Proof of Work over concrete type T. T can be any type that implements serde::Serialize.
#[derive(Serialize, Builder, Deserialize, PartialEq, Clone, Debug)]
pub struct PoW<T> {
    pub nonce: u64,
    pub result: String,
    #[builder(default = "PhantomData", setter(skip))]
    _spook: PhantomData<T>,
}

/// Configuration for generting proof of work
/// Please choose a long, unique value for salt
/// Resistance to dictionary/rainbow attacks depend on uniqueness
/// of the salt
#[derive(Serialize, Deserialize, Builder, PartialEq, Clone, Debug)]
pub struct Config {
    pub salt: String,
}

/// Return value of incremental prooving. When proof  is ready, IncrementalSolve::Work is returned
/// and when proof is not ready, IncrementalSolve::Intermediate is returned
#[cfg(feature = "incremental")]
pub enum IncrementalSolve<T> {
    /// Intermediate result
    Intermediate(u128, u64, Sha256, u128),
    /// Final result
    Work(PoW<T>),
}

impl Config {
    ///
    /// step is used to control the number of cycles after which the function should exit, even
    /// when the proof isn't ready
    /// inter is used to keep track of state and complete proof generation. Set inter to None
    /// during first cyle and pass the returned value of the previous cycle to continue proof
    /// generation

    #[cfg(feature = "incremental")]
    pub fn stepped_prove_work<T>(
        &self,
        t: &T,
        difficulty: u32,
        step: usize,
        inter: Option<IncrementalSolve<T>>,
    ) -> bincode::Result<IncrementalSolve<T>>
    where
        T: Serialize,
    {
        bincode::serialize(t)
            .map(|v| self.stepped_prove_work_serialized(&v, difficulty, step, inter))
    }

    #[cfg(feature = "incremental")]
    /// Create Proof of Work over item of type T.
    ///
    /// Make sure difficulty is not too high. A 64 bit difficulty,
    /// for example, takes a long time on a general purpose processor.
    /// The input is assumed to be serialized using network byte order.
    ///
    /// Make sure difficulty is not too high. A 64 bit difficulty,
    /// for example, takes a long time on a general purpose processor.
    /// step is used to control the number of cycles after which the function should exit, even
    /// when the proof isn't ready
    /// inter is used to keep track of state and complete proof generation. Set inter to None
    /// during first cyle and pass the returned value of the previous cycle to continue proof
    /// generation
    /// Returns bincode::Error if serialization fails.
    /// Create Proof of Work on an already serialized item of type T.
    fn stepped_prove_work_serialized<T>(
        &self,
        prefix: &[u8],
        difficulty: u32,
        step: usize,
        inter: Option<IncrementalSolve<T>>,
    ) -> IncrementalSolve<T>
    where
        T: Serialize,
    {
        let (mut result, mut n, prefix_sha, difficulty) = match inter {
            Some(IncrementalSolve::Intermediate(result, nonce, prefix, difficulty)) => {
                (result, nonce, prefix, difficulty)
            }
            _ => {
                let prefix_sha = Sha256::new().chain(&self.salt).chain(prefix);
                let n = 0;
                let result = 0;
                let difficulty = get_difficulty(difficulty);
                (result, n, prefix_sha, difficulty)
            }
        };
        let mut count = 0;
        while result < difficulty {
            if count > step {
                return IncrementalSolve::Intermediate(result, n, prefix_sha, difficulty);
            } else {
                count += 1;
            }
            n += 1;
            result = dev::score(prefix_sha.clone(), n);
        }
        IncrementalSolve::Work(PoW {
            nonce: n,
            result: result.to_string(),
            _spook: PhantomData,
        })
    }

    /// Create Proof of Work over item of type T.
    ///
    /// Make sure difficulty is not too high. A 64 bit difficulty,
    /// for example, takes a long time on a general purpose processor.
    /// Returns bincode::Error if serialization fails.
    pub fn prove_work<T>(&self, t: &T, difficulty: u32) -> bincode::Result<PoW<T>>
    where
        T: Serialize,
    {
        bincode::serialize(t).map(|v| self.prove_work_serialized(&v, difficulty))
    }

    /// Create Proof of Work on an already serialized item of type T.
    /// The input is assumed to be serialized using network byte order.
    ///
    /// Make sure difficulty is not too high. A 64 bit difficulty,
    /// for example, takes a long time on a general purpose processor.
    pub fn prove_work_serialized<T>(&self, prefix: &[u8], difficulty: u32) -> PoW<T>
    where
        T: Serialize,
    {
        let prefix_sha = Sha256::new().chain(&self.salt).chain(prefix);
        let mut n = 0;
        let mut result = 0;
        let difficulty = get_difficulty(difficulty);
        while result < difficulty {
            n += 1;
            result = dev::score(prefix_sha.clone(), n);
        }
        PoW {
            nonce: n,
            result: result.to_string(),
            _spook: PhantomData,
        }
    }

    /// Calculate the PoW score with the provided input T.
    pub fn calculate<T>(&self, pow: &PoW<T>, t: &T) -> bincode::Result<u128>
    where
        T: Serialize,
    {
        bincode::serialize(t).map(|v| self.calculate_serialized(pow, &v))
    }

    /// Calculate the PoW score of an already serialized T and self.
    /// The input is assumed to be serialized using network byte order.
    pub fn calculate_serialized<T>(&self, pow: &PoW<T>, target: &[u8]) -> u128
    where
        T: Serialize,
    {
        dev::score(Sha256::new().chain(&self.salt).chain(target), pow.nonce)
    }

    /// Verifies that the PoW is indeed generated out of the phrase provided.
    pub fn is_valid_proof<T>(&self, pow: &PoW<T>, t: &T) -> bool
    where
        T: Serialize,
    {
        match self.calculate(pow, t) {
            Ok(res) => {
                return if pow.result == res.to_string() {
                    true
                } else {
                    false
                }
            }
            Err(_) => return false,
        }
    }

    /// Checks if the PoW result is of sufficient difficulty
    pub fn is_sufficient_difficulty<T>(&self, pow: &PoW<T>, target_diff: u32) -> bool
    where
        T: Serialize,
    {
        match pow.result.parse::<u128>() {
            Ok(res) => return res >= get_difficulty(target_diff),
            Err(_) => return false,
        }
    }
}

pub mod dev {
    use super::*;

    pub fn score(prefix_sha: Sha256, nonce: u64) -> u128 {
        first_bytes_as_u128(
            prefix_sha
                .chain(&nonce.to_string()) //used to be: to_be_bytes() converts to network endian
                // chain() expexets something that can be converted to &[u8], String is fine
                .finalize()
                .as_slice(),
        )
    }

    /// # Panics
    ///
    /// panics if inp.len() < 16
    fn first_bytes_as_u128(inp: &[u8]) -> u128 {
        use bincode::config::*;
        DefaultOptions::new()
            .with_fixint_encoding()
            .allow_trailing_bytes()
            .with_no_limit()
            .with_big_endian()
            .deserialize(&inp)
            .unwrap()
    }
}

// utility function to get u128 difficulty factor from u32
// javacript isn't capable of represnting u128 so
fn get_difficulty(difficulty_factor: u32) -> u128 {
    u128::max_value() - u128::max_value() / difficulty_factor as u128
}

#[cfg(test)]
mod test {
    use super::*;

    const DIFFICULTY: u32 = 1000;

    fn get_config() -> Config {
        ConfigBuilder::default()
            .salt(
                "79ziepia7vhjgviiwjhnend3ofjqocsi2winc4ptqhmkvcajihywxcizewvckg9h6gs4j83v9".into(),
            )
            .build()
            .unwrap()
    }

    #[test]
    fn base_functionality() {
        // Let's prove we did work targeting a phrase.
        let phrase = b"Ex nihilo nihil fit.".to_vec();
        let config = get_config();
        let pw = config.prove_work(&phrase, DIFFICULTY).unwrap();
        assert!(config.calculate(&pw, &phrase).unwrap() >= get_difficulty(DIFFICULTY));
        assert!(config.is_valid_proof(&pw, &phrase));
        assert!(config.is_sufficient_difficulty(&pw, DIFFICULTY));
    }

    #[test]
    fn double_pow() {
        let phrase = "Ex nihilo nihil fit.".to_owned();
        let config = get_config();

        let pw = config.prove_work(&phrase, DIFFICULTY).unwrap();
        let pwpw = config.prove_work(&pw, DIFFICULTY).unwrap();

        assert!(config.calculate(&pw, &phrase).unwrap() >= get_difficulty(DIFFICULTY));
        assert!(config.is_valid_proof(&pw, &phrase));
        assert!(config.is_sufficient_difficulty(&pw, DIFFICULTY));

        assert!(config.calculate(&pwpw, &pw).unwrap() >= get_difficulty(DIFFICULTY));
        assert!(config.is_valid_proof(&pwpw, &pw));
        assert!(config.is_sufficient_difficulty(&pwpw, DIFFICULTY));
    }

    #[test]
    fn is_not_valid_proof() {
        let phrase = "Ex nihilo nihil fit.".to_owned();
        let phrase2 = "Omne quod movetur ab alio movetur.".to_owned();

        let config = get_config();
        let pw = config.prove_work(&phrase, DIFFICULTY).unwrap();

        let pw2 = config.prove_work(&phrase2, DIFFICULTY).unwrap();

        assert!(!config.is_valid_proof(&pw, &phrase2));
        assert!(!config.is_valid_proof(&pw2, &phrase));
    }

    fn check_time(prev: u128, current: u128) -> bool {
        if prev < current {
            true
        } else {
            false
        }
    }

    #[test]
    fn computation_time_test() {
        use std::time::Instant;
        const DIFFICULTY: u32 = 50000;

        let target = "testing";
        let config = get_config();
        let mut current = Instant::now();
        config.prove_work(&target, DIFFICULTY).unwrap();
        let prev = current.elapsed().as_nanos();

        current = Instant::now();
        config.prove_work(&target, DIFFICULTY * 10).unwrap();
        let tmp = current.elapsed().as_nanos();
        assert!(check_time(prev, tmp));
    }

    #[test]
    fn serialization_test() {
        let target: u8 = 1;
        let config = get_config();
        let pw = config.prove_work(&target, DIFFICULTY).unwrap();

        let message: (u8, PoW<u8>) = (target, pw);
        let message_ser = bincode::serialize(&message).unwrap();
        let recieved_message: (u8, PoW<u8>) = bincode::deserialize(&message_ser).unwrap();
        assert_eq!(recieved_message, message);
        assert!(config.is_sufficient_difficulty(&message.1, DIFFICULTY));
        assert!(config.is_valid_proof(&message.1, &target));
    }

    #[test]
    #[cfg(feature = "incremental")]
    fn stepped_solve() {
        let phrase = "Ex nihilo nihil fit.".to_owned();
        let config = get_config();

        let mut inter = None;
        loop {
            match config.stepped_prove_work(&phrase, 50000, 1000, inter) {
                Ok(IncrementalSolve::Intermediate(result, nonce, prefix, difficulty)) => {
                    println!("Current nonce {nonce}");
                    inter = Some(IncrementalSolve::Intermediate(
                        result, nonce, prefix, difficulty,
                    ));
                    continue;
                }

                Ok(IncrementalSolve::Work(w)) => {
                    assert!(config.is_valid_proof(&w, &phrase));
                    assert!(config.is_sufficient_difficulty(&w, DIFFICULTY));
                    break;
                }
                Err(e) => panic!("{}", e),
            };
        }
    }
}